

# **TPU** Belts

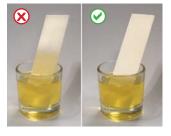
#### Food Industry



#### **Anti-microbial**

Reduce microbial growth by over 99%. Its principle active agent is bacteriostatic, preventing the belt from adding microbial load to the conveyed product.




#### **Frayless**

Belts with special fabric that do not fray, avoiding product contamination when belt edges are not sealed.



#### **Anti-hydrolysis**

TPU with high resistance to hydrolytic deterioration, minimizes fungus formation under warm, wet and humid conditions. Most appropriate for applications with water, daily or frequent cleaning and sanitizing protocols.




#### Wick resistant

Impermeabilized fabrics which pass Wicking Test G11. Prevent belt fabrics from absorbing water and oils, increasing hygiene in food applications.



#### Metal detectable

Ideal for conveyors which lead products up to metal detection devices or contamination control system.



#### **Knife-edges**

Belts with high flexibility that adapt to small pulley diameters, common in dough, biscuit and chocolate transfer conveyors.



#### Silk-Mat finish

Homogenous, non-porous, easy to clean, low adherent top cover for good release and product transfer.



#### **Food Quality**

Belts as well as their raw materials meet FDA and EU 10/2011 regulations.



#### Abrasion resistant

Suitable for abrasive products, or where scrapers or side skirts are used.



### **TPU** for food

| Belt type             | Top cover |                  |              | Bottom cover Fabric |             | brics       | s Belt<br>thickness | 1%                 | A CB   |      | crobial        | Anti-hydrolysis | Metal detectable |          |   |
|-----------------------|-----------|------------------|--------------|---------------------|-------------|-------------|---------------------|--------------------|--------|------|----------------|-----------------|------------------|----------|---|
|                       | Color     | Hardness<br>°ShA | Finish       | Finish              | Nº of plies | Weft        | mm                  | elongation<br>N/mm | Ø mm   | Ø mm | Anti-microbial | Anti-hy         | Metal d          | Frayless |   |
|                       |           |                  |              |                     |             |             |                     | Stand              | lard T | PU   |                |                 |                  |          |   |
| CS06 UF               | Ocher 01  | 86               | Smooth       | W Impregn.          | 1           | Rigid       | 0,75                | 5                  | 4      | 15   | -              | _               | _                | -        |   |
| CSX06 K1F             | Ocher 01  | 86               | Pattern K1   | W Impregn.          | 1           | Rigid       | 0,82                | 5                  | 5      | 15   | -              | -               | -                | -        |   |
| CS07 UF               | White     | 86               | Smooth       | W Impregn.          | 1           | Rigid       | 0.75                | 5                  | 4      | 15   | -              | -               | -                | -        |   |
| CS07 UFMT             | White     | 86               | Mat          | W Impregn.          | 1           | Rigid       | 0,75                | 5                  | 4      | 15   | -              | -               | -                | -        |   |
| CSX08 AF-BR           | Brown 00  | 86               | Pattern A    | W Impregn. ⊕        | 1           | Rigid       | 1.20                | 4                  | 6      | 20   | -              | -               | -                | -        |   |
| CSX08 DF              | White     | 86               | Pattern D    | W Impregn.          | 1           | Rigid       | 1,20                | 4                  | 6      | 20   | -              | -               | -                | -        |   |
| CS08 UF               | White     | 86               | Smooth       | W Impregn. ⊕        | 1           | Rigid       | 1.00                | 4                  | 6      | 20   | -              | -               | -                | -        |   |
| CS08 UFMT             | White     | 86               | Mat          | W Impregn.          | 1           | Rigid       | 1,00                | 4                  | 6      | 20   | -              | -               | -                | -        |   |
| CS09 FF               | Natur     |                  | W Impregn.   | W Impregn. ⊕        | 2           | Rigid       | 1,20                | 8                  | 5      | 5    | -              | -               | -                | -        |   |
| CS09 UF               | White     | 86               | Smooth       | W Impregn. ⊕        | 2           | Rigid       | 1,45                | 8                  | 6      | 30   | -              | -               | -                | -        |   |
| CS09 UFMT             | White     | 86               | Mat          | W Impregn. ⊕        | 2           | Rigid       | 1,45                | 8                  | 6      | 30   | -              | -               | -                | -        |   |
| CS10 FF               | Natur     |                  | Cotton-Poly. | Cotton-Poly.        | 2           | Flexible    | 1,40                | 6                  | 10     | 10   | -              | -               | -                | -        |   |
| CS10 UFMT             | White     | 86               | Mat          | W Impregn.          | 2           | Rigid       | 1,65                | 8                  | 8      | 40   | -              | -               | -                | -        |   |
| CS12 UF <sup>v</sup>  | White     | 86               | Smooth       | WP                  | 2           | Rigid       | 1,60                | 10                 | 20     | 50   | -              | -               | -                | -        |   |
| C12 UFMT <sup>v</sup> | White     | 93               | Mat          | WP                  | 2           | Rigid       | 1,50                | 10                 | 20     | 50   | -              | -               | -                | -        |   |
| CS20 UFMT             | White     | 93               | Mat          | W Impregn.          | 2           | Rigid       | 2,60                | 12                 | 60     | 100  | -              | -               | -                | -        |   |
| NS07 AY               | Blue 06   | 86               | Pattern A    | Pattern Y           | 1           | Rigid       | 1,55                | 5                  | 10     | 10   | _              | _               | -                | -        |   |
| NS07 UFMT             | Blue 06   | 86               | Mat          | W Impregn.          | 1           | Rigid       | 0,75                | 5                  | 4      | 15   | -              | -               | _                | -        |   |
| N07UU                 | Blue 06   |                  | W Impregn.   | W Impregn.          | 1           | Rigid       | 0.45                | 5                  | 8      | 8    | -              | -               | -                | -        |   |
| NS08 UFMT             | Blue 06   | 86               | Mat          | W Impregn.          | 1           | Rigid       | 1,00                | 4                  | 6      | 20   | -              | -               | -                | -        |   |
| NS09 UF               | Blue 06   | 86               | Smooth       | W Impregn. ⊕        | 2           | Rigid       | 1.45                | 8                  | 6      | 30   | -              | -               | -                | -        |   |
| NS09 UFMT             | Blue 06   | 86               | Mat          | W Impregn.          | 2           | Rigid       | 1,45                | 8                  | 6      | 30   | -              | -               | -                | -        |   |
| NS09UFMT-H-BL08       | Blue 08   | 93               | Mat          | W Impregn. ⊕        | 2           | Rigid       | 1,45                | 8                  | 8      | 30   | -              | -               | -                | -        |   |
| NS11UFMT              | Blue 06   | 93               | Mat          | W Impregn. ⊕        | 2           | Extra rigid | 2,40                | 6                  | 30     | 50   | -              | _               | _                | -        |   |
| NS20 UFMT             | Blue 06   | 93               | Mat          | W Impregn. ⊕        | 2           | Rigid       | 2,60                | 12                 | 60     | 100  | -              | -               | -                | -        |   |
|                       |           |                  |              |                     |             |             |                     | Premi              | um Tl  | PU   |                |                 |                  |          | _ |
| CDOZAV ANA            | \\/hita   | 05               | Dattara A    | Dottorn V           | 1           | Diaid       | 1 55                | -                  | 10     | 10   | -              | ,               |                  |          |   |

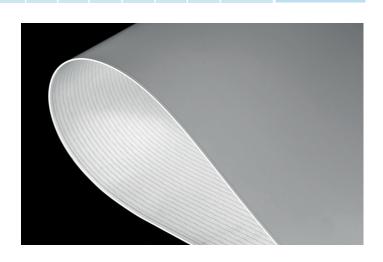
|                 | Premium IPO |    |            |              |   |          |      |    |     |     |          |              |          |          |  |
|-----------------|-------------|----|------------|--------------|---|----------|------|----|-----|-----|----------|--------------|----------|----------|--|
|                 |             |    |            |              |   |          |      |    |     |     |          |              |          |          |  |
| CP07AY-AM       | White       | 85 | Pattern A  | Pattern Y    | 1 | Rigid    | 1,55 | 5  | 10  | 10  | <b>✓</b> | <b>✓</b>     | -        | -        |  |
| CP07UFMT-AM     | White       | 85 | Mat        | W Impregn.   | 1 | Rigid    | 0,75 | 5  | 4   | 15  | <b>✓</b> | /            | -        | -        |  |
| CP09UFMT-AM     | White       | 85 | Mat        | W Impregn. 🗢 | 2 | Rigid    | 1,20 | 8  | 6   | 30  | <b>✓</b> | /            | -        | -        |  |
| CPX09UA2MT-AM   | White       | 85 | Mat        | Pattern A2   | 2 | Rigid    | 2,10 | 9  | 30  | 50  | <b>✓</b> | /            | -        | -        |  |
| CP10UFMT-AM-FL  | White       | 85 | Mat        | W Impregn.   | 2 | Rigid    | 1,60 | 6  | 10  | 50  | <b>✓</b> | /            | -        | ✓        |  |
| NP07UFMT-AM     | Blue 06     | 85 | Mat        | W Impregn.   | 1 | Rigid    | 0,75 | 5  | 4   | 15  | <b>✓</b> | /            | -        | -        |  |
| NP09DF-AM       | Blue 06     | 85 | Pattern D  | W Impregn. 🕳 | 2 | Rigid    | 1,60 | 8  | 6   | 30  | <b>✓</b> |              | -        | -        |  |
| NP09FF          | Blue 10     | -  | W Impregn. | W Impregn. 👄 | 2 | Rigid    | 1,00 | 8  | 5   | 5   | <b>✓</b> | /            | -        | -        |  |
| NP09UFMT-AM     | Blue 06     | 85 | Mat        | W Impregn.   | 2 | Rigid    | 1,20 | 8  | 6   | 30  | <b>✓</b> | /            | -        | -        |  |
| NP09UFMTMD-BL09 | Blue 09     | 85 | Mat        | W Impregn.   | 2 | Rigid    | 1,20 | 8  | 6   | 30  | -        | /            | <b>✓</b> | -        |  |
| NPX09 UA2MT-AM  | Blue 06     | 85 | Mat        | Pattern A2   | 2 | Rigid    | 2,10 | 9  | 30  | 50  | <b>✓</b> | /            | -        | -        |  |
| NPX20 UA2MT-AM  | Blue 06     | 85 | Mat        | Pattern A2   | 2 | Rigid    | 3,15 | 12 | 100 | 100 | <b>✓</b> | /            | -        | -        |  |
| NP10UFMT-AM-FL  | Blue 06     | 85 | Mat        | W Impregn.   | 2 | Rigid    | 1,60 | 6  | 50  | 80  | <b>✓</b> | /            | -        | ✓        |  |
| NP13UFMT-AM-FL  | Blue 06     | 85 | Mat        | W Impregn.   | 2 | Flexible | 2,30 | 9  | 60  | 90  | <b>✓</b> | $\checkmark$ | -        | <b>√</b> |  |










#### **Food Regulations**

These are very complicated regulations and are constantly evolving. To comply with them, we must follow strictly, what is established by FDA and/or the EU Regulations EC1935/2004 and EU10/2011 as well as their subsequent extensions, this requires much specialization.

In particular, the Declaration of Compliance should include information about the global and specific migrations as well as the simulants used with respect to the normative or regulation compliance. The credibility of the manufacturer who issues the Certificates is vital, e.g. in esbelt, we always test our belts against the most aggressive simulant which best replicates the harshest possible condition during the use of our belts.



| Wick resistant | Silk-Mat finish | FDA        | EU10/2011 Reg. | 1935/2004 Reg. | Abrasion resist. | Sealed edges | Max.<br>roll<br>width<br>mm | Belt type               |
|----------------|-----------------|------------|----------------|----------------|------------------|--------------|-----------------------------|-------------------------|
|                |                 |            |                |                |                  |              |                             |                         |
|                |                 |            |                |                |                  |              | 2200                        |                         |
| <b>/</b>       | -               | <b>/</b>   | <b>√</b>       | <b>/</b>       | <b>/</b>         | <b>/</b>     | 2200                        | CS06 UF                 |
| <b>/</b>       | -               | <b>/</b>   | -              | /              | <b>/</b>         | <b>/</b>     | 1250                        | CSX06 K1F               |
| /              | -               | <b>/</b>   | <b>/</b>       | <b>\</b>       | <b>/</b>         | <b>/</b>     | 2200<br>2200                | CS07 UF                 |
| <b>/</b>       | <b>√</b>        | /          | <b>√</b>       | 1              | /                | <b>/</b>     | 1250                        | CS07 UFMT               |
| <b>/</b>       | -               | ✓          | -              | ✓<br>✓         | <b>\</b>         | ✓<br>✓       | 1300                        | CSX08 AF-BR<br>CSX08 DF |
| <b>√</b>       | -               | <b>\</b>   | √              | ✓<br>✓         | <b>\</b>         | ✓<br>✓       | 2200                        | CSXU8 DF                |
| <b>/</b>       | -               | ✓          | \frac{1}{2}    | ✓<br>✓         | <b>\</b>         | ✓<br>✓       | 2200                        | CS08 UF<br>CS08 UFMT    |
| <b>/</b>       | -               | ✓<br>✓     | ✓<br>✓         | ✓<br>✓         | -                | -            | 2200                        | CS08 OFWIT              |
| ✓<br>✓         | -               | ✓<br>✓     | ✓<br>✓         | <i></i>        | -<br>-           | _            | 2200                        | CS09 FF                 |
| ✓<br>✓         | <i>_</i>        | ✓<br>✓     | ✓<br>✓         | ✓              | ✓ <b>/</b>       | ✓ <b>/</b>   | 2200                        | CS09 UFMT               |
| V              | -               | ✓ /        | ✓<br>✓         | <b>√</b>       | · ·              | _            | 2200                        | CS10 FF                 |
| /              | /               | ✓ /        | ✓ <b>/</b>     | ✓              | /                | /            | 2200                        | CS10 TFMT               |
| /              | -               | ✓ /        | ✓ <b>/</b>     | ✓              | ✓ /              | ✓ /          | 2000                        | CS12 UF <sup>V</sup>    |
| ✓ /            | /               | ✓ <b>/</b> | ✓              | ✓              | /                | ✓            | 2-3000                      | C12 UFMT <sup>v</sup>   |
| ✓              | ✓               | ✓ /        | ✓              | ✓              | /                | ✓            | 2100                        | CS20 UFMT               |
|                |                 |            |                |                |                  |              |                             |                         |
| <b>/</b>       | -               | <b>/</b>   | <b>√</b>       | <b>/</b>       | <b>/</b>         | <b>/</b>     | 2000                        | NS07 AY                 |
| <b>/</b>       | <b>√</b>        | <b>/</b>   | $\checkmark$   | <b>/</b>       | <b>√</b>         | <b>/</b>     | 2200                        | NS07 UFMT               |
| <b>/</b>       | -               | <b>/</b>   | -              | ✓<br>✓         | -                | <b>/</b>     | 3000<br>2200                | N07UU<br>NS08 UFMT      |
| <b>/</b>       | <b>√</b>        | <b>/</b>   | <b>/</b>       | ✓<br>✓         | <b>/</b>         | <b>/</b>     | 2200                        | NS08 UFIVIT             |
| <b>/</b>       | - /             | <b>/</b>   | ✓<br>✓         | ✓<br>✓         | \<br>\           | ✓<br>✓       | 2200                        | NS09 UF<br>NS09 UFMT    |
| <b>/</b>       | ✓<br>✓          | ✓<br>✓     | ✓<br>✓         | ✓<br>✓         | ✓<br>✓           | ✓<br>✓       | 2200                        | NS09 UFWIT              |
| /              | ✓<br>✓          | ✓<br>✓     | ✓<br>✓         | ✓<br>✓         | ✓<br>✓           | ✓<br>✓       | 2200                        | NS11UFMT                |
| ✓<br>✓         | ✓<br>✓          | ✓<br>✓     | ✓<br>✓         | ✓<br>✓         | ✓<br>✓           | ✓<br>✓       | 2100                        | NS20 UFMT               |
| <b>V</b>       | V               | V          | V              | V              | V                | V            | 2100                        | N320 OFWII              |
|                |                 |            |                |                |                  |              |                             |                         |
|                |                 |            |                |                |                  |              |                             |                         |
| <b>✓</b>       | -               | <b>✓</b>   | <b>✓</b>       | <b>✓</b>       | <b>✓</b>         | <b>✓</b>     | 2000                        | CP07AY-AM               |
| ✓              | <b>✓</b>        | ✓          | ✓              | <b>✓</b>       | <b>✓</b>         | $\checkmark$ | 2200                        | CP07UFMT-AM             |
| ✓              | <b>✓</b>        | ✓          | ✓              | ✓              | <b>✓</b>         | $\checkmark$ | 2200                        | CP09UFMT-AM             |
| <b>✓</b>       | <b>✓</b>        | ✓          | $\checkmark$   | <b>√</b>       | <b>✓</b>         | <b>√</b>     | 1250                        | CPX09UA2MT-AM           |
| <b>√</b>       | ✓               | <b>✓</b>   | ✓              | ✓              | <b>√</b>         | <b>✓</b>     | 2200                        | CP10UFMT-AM-FL          |
| /              | <b>✓</b>        | <b>✓</b>   | <b>✓</b>       | <b>✓</b>       | /                | <b>✓</b>     | 2200                        | NP07UFMT-AM             |
| <b>✓</b>       | -               | <b>✓</b>   | <b>✓</b>       | <b>✓</b>       | <b>✓</b>         | <b>✓</b>     | 2000                        | NP09DF-AM               |
|                |                 |            |                |                |                  |              |                             |                         |



2200

2200

2200

1250

1250

2200

2200

NP09FF

NP09UFMT-AM

NP09UFMTMD-BL09

NPX09 UA2MT-AM

ΝΡΧ20 ΠΑ2ΜΤ-ΔΜ

NP10UFMT-AM-FL

NP13UFMT-AM-FL



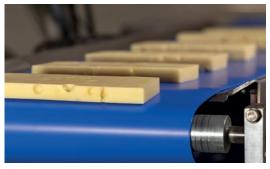
#### **Esbelt Anti-microbial AM belts**

**Reduce microbial growth by over 99%** (tested according to ISO 22196 norm). They solve or minimize the prevalent problem of the belts adding microbial load to the conveyed food product in between successive belt sanitization. The effectiveness of this anti-microbial property lasts for the entire belt life as it is based on an innovative formulation which is stable and non-hydrosoluble (unlike silver ions).

By using our AM belts, it is no longer necessary to install UV disinfection lamps on the conveyors, thus saving investment, maintenance and energy costs.

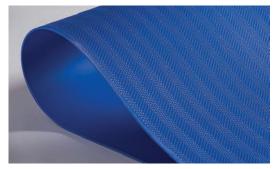
#### **Detergency & Biofilms**

For effective cleaning of the conveyor belts, it is advisable to use enzymatic detergents which are also specifically formulated to not harm the belts. The range of enzymatic detergents specially formulated by ITRAM HIGIENE, in collaboration with the Technical Department of **esbelt**, offers optimal belt sanitization, preventing and eliminating the possible pre-sence of biofilms (very resistant and potentially dangerous colonies of mircro-organisms).


## Fabrics resistant to fluid penetration (W impreg. and WP fabric)

The absorption of liquids or oils by the bottom fabric of the conveyor belt can bring about problems like delamination of plies and edge separa-tion. Pathogenic microorganisms may also penetrate the fabric throu-gh capillarity. **Esbelt** 's wick resistant belts are made with a specially treated fabric to solve these problems. They pass the Wicking Test G11, a concept defined in an FDA guideline in June 2011 under chapter G, section 11. Press a big nib marker on a fabric to get an idea if the fabric is "wick resistant" or not.

#### Sealed belt edges (molded edges)

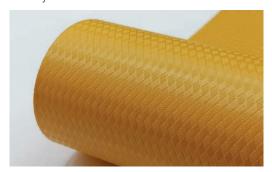

In esbelt, we can seal the edges of PU belts from 1-ply 0.8mm thick with smooth, mat or embossed top and bottom cover. Sealed edges prevent oils and moistures from penetrating the fabric layer of the conveyor belts from the borders, thus avoiding microbial growth and ply separation. They also prevent fabric fiber from sticking out from the belt edges and contaminating the conveyed products. Our technique of sealing thin PU belts ensures that the belt edges are protected while maintaining its flexibility to work on knife edge applications.





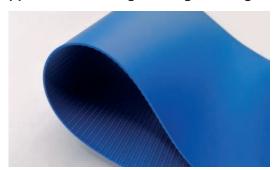
## Double TPU cover. Ideal for use in the cheese production process.

2-ply blue belts, antimicrobial, high resistance to animal and vegetable oils and fats.
Silk matt top cover finish.

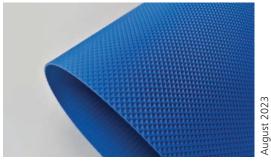



Bottom cover with positive A2 (rice grain) pattern with rounded borders to avoid residue or grease accumulation and to facilitate cleaning.




# 1-ply TPU belts for cooling tunnels. Thin belts with high thermal conductivity.

Thin belts with high thermal conductivity. Excellent longitudinal flexibility and high lateral stability. Good abrasion resistance.




Smooth top cover or with harlequin pattern.

## 100% TPU Elastic belts, without fabric for small conveyors without tensioner, Processing of unwrapped food (sorting, cutting, filleting, slicing, precision weighing & packaging).



Mat finish for easy product release.



D pattern for an optimal grip of the product.

# esbelt

#### **Esbelt Group companies:**

#### Esbelt, S.A.U.

Provença, 385 08025 Barcelona Spain Tel. +34-93 207 33 11 www.esbelt.com esbelt@esbelt.com

#### **Esbelt GmbH**

Habichtweg 2 41468 Neuss Germany Tel. +49-2131 9203-0 www.esbelt.de info@esbelt.de

#### **Esbelt Corporation**

13975 Riverport Place - Suite 105 Maryland Heights, MO 63043 USA Tel: +1-636 294 3200 www.esbelt.us esbelt@esbelt.us

#### **Esbelt SAS**

190 Av. du Roulage / ZA du Roulage 32600 Pujaudran France Tel. +33-5 42 54 54 54 www.esbelt.fr esbelt@esbelt.fr

#### **Esbelt ApS**

Agerhatten 16B - Indgang 2 DK-5220 Odense SØ Denmark Tel. +45 70 20 62 09 www.esbelt.dk esbelt@esbelt.dk